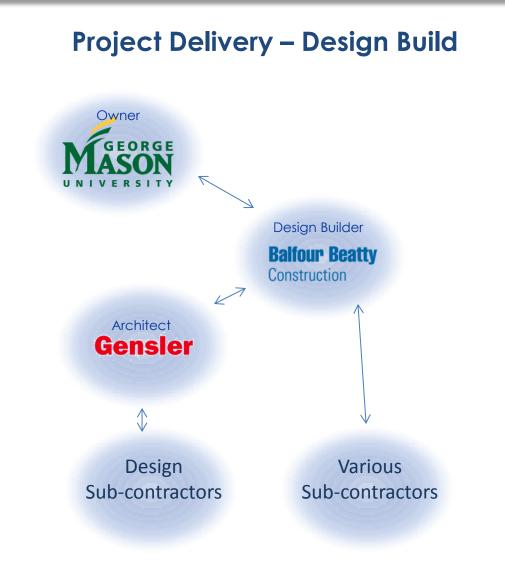


Introduction
Prevention through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System
Green Roof Addition
Conclusion
Acknowledgments



Renderings courtesy of Gensler

Introduction Prevention Through Design Façade Re-design for PtD Stick-Built vs. Infinity System **Green Roof Addition** Conclusion **Acknowledgments**

Renderings courtesy of Gensler

Project Statistics:

- 295 Freshman Students
- 70,057 GSF
- •~\$16,000,00
- 12 months of construction
- LEED Silver

Introduction
Prevention Through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System
Green Roof Addition
Conclusion
Acknowledgments

Investigation Goals

Investigate new ways to increase job-site safety

Reduce injury risk for construction workers, future students and maintenance personnel

Reduce the cost of construction while maintaining quality

Increase the awareness for sustainable design

Preview of Analyses

Analysis 1: Prevention through Design

Analysis 2: Façade Re-design for Fall Safety
Architectural Breadth: Mechanical Access Points

Analysis 3: Stick-Built construction vs. Infinity System

Analysis 4: Green Roof Addition
Structural Breadth: Green Roof Load incurrence

ANALYSIS ONE

Introduction Prevention Th

Prevention Through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System
Green Roof Addition
Conclusion
Acknowledgments

Current Industry-Wide Issues

- Lack of risk knowledge
- Lack of early collaboration/communication
- Lack of contractual obligation for safety

Prevention through Design

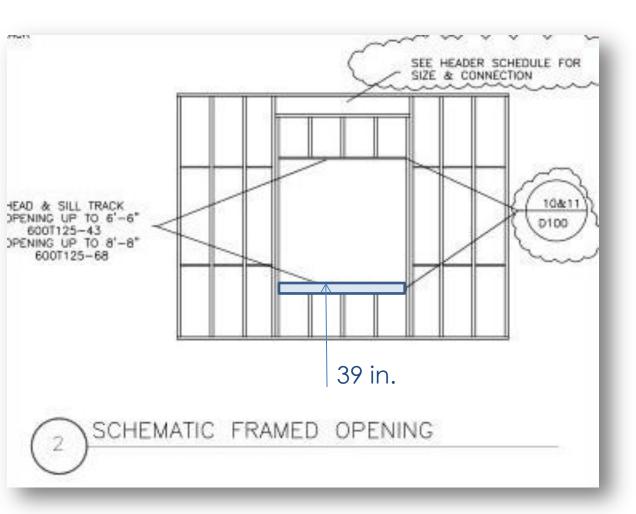
Critical Industry Research

Construction Maintenance Decommissioning Disposal / Recycling

"...the Center for Disease Control and Prevention (CDC) have pinpointed in recent studies that an abundant **37%** of these work related injuries are **directly caused by poor design**" - CDC.gov

Ideas for Implementation

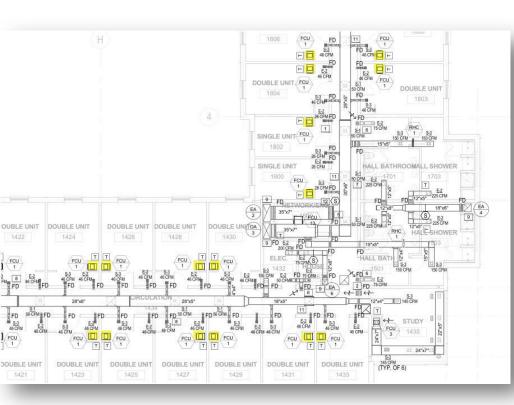
- Raising sill height to 39"
- Prefabrication
- Raising parapet height and using flat roofs
- Lowering mechanical access points
- Using low VOC materials


Introduction
Prevention Through Design
Façade Re-design for PtD
Architectural Breadth
Stick-Built vs. Infinity System
Green Roof Addition
Conclusion
Acknowledgments

Results:

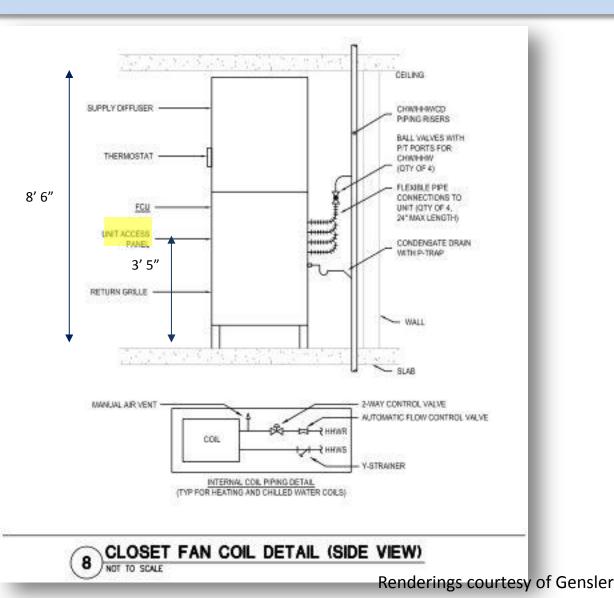
- Increase job site safety
- Prevent student misconduct
- Benefits outweigh cost
- Save cost on temporary fall protection lines

Façade Re-design and Implementation of Prevention through Design


- Logical Safety improvement method given prefab structural system
- Total cost of implementation: \$17,156.40
- No schedule impact

ARCHITECTURAL BREADTH

Introduction
Prevention Through Design
Façade Re-design for PtD
Architectural Breadth
Stick-Built vs. Infinity System
Green Roof Addition
Conclusion
Acknowledgments



FCU Access points in each unit

Investigation of Mechanical Access Points

Mechanical Access Heights								
Mechanical Room	Floor Mounted Equipment							
Init FCU Access	3' 5"							
Mechanical Penthouse	7' 8"							

- All access points considered safe (except trip hazard in pent house)
- All access points behind locked doors or restricted access
- Considered very "safe" design

ANALYSIS THREE

Introduction
Prevention Through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System
Green Roof Addition
Conclusion
Acknowledgments

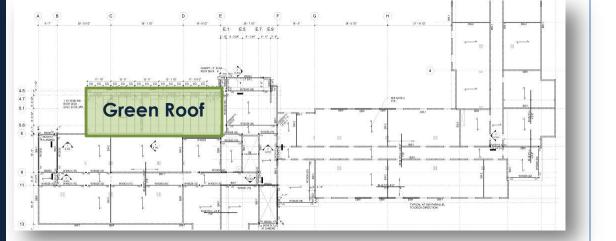
Benefits

- No schedule change with prefabrication
- Fire safe construction
- Experienced craftsmen in D.C. area

Stick-Built Framing vs. Infinity Structural System

Overall Cost of S	tick-Built System
Part of System	Price
Wooden Roof Trusses/Sheathing	\$128,240.64
Wooden Framing	\$612,998.75
Wooden Joists/Girders	\$1,224,596.36
OTAL COST	\$1,965,835.75
otal (\$/SF)	\$28.06
ocation Adjustment Multiplier (78.3)	\$21.97

- Infinity Structural System estimated at \$23 / \$F
- Total Savings of \$72,158.71


Photos courtesy of Brad Williams

ANALYSIS FOUR

Introduction
Prevention Through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System
Green Roof Addition
Structural Analysis
Conclusion
Acknowledgments

Multi-purpose Room Green Roof

- 1,310 SF total
- Omni-Ecosystem comprehensive style green roof for optimum weight
- Can be added post-construction
- Low maintenance, high efficiency

Green Roof Addition

- Installation Cost of \$17,696.63
- 1 day installation

50 – year Life Cycle Cost Benefit Analys	is (\$/SF)
Initial Cost	\$13.51
Maintenance and Replacement	\$18.25
Storm Water Reduction Savings	\$11.37
Energy Savings	\$6.37
CO2 Emission Savings	\$2.60
Community Benefits	\$30.90
Property Re-sale value premium	\$105.93

Fiscal Analysis

•Payback Period: 4.17 - 6.7 years

Internal Rate of Return*: 4.21%

•Return on Investment*: 196%

* Not including CO2 Emissions, Community Benefits, or Re-Sale Value

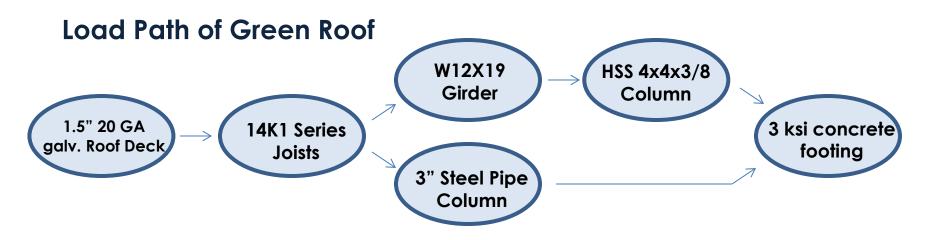
n ar rolant photo occlus annu grass of the photo occlus annu grass occlus and occlusions occlus and occlusions occlus and occlusions occlusions and occlusions occlusions and occurs occlusions and occurs occurs

Takeaways

- Significantly longer life than T.P.O in the bottom allows for interchange of water.
- Educational opportunities in sustainability
- Lifetime net yield of up to \$182,000 of benefits

STRUCTURAL BREADTH

Introduction
Prevention Through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System
Green Roof Addition
Structural Analysis
Conclusion
Acknowledgments


Load Comparison

Existing Factored Load: 81 PSF

Factored Load with Green Roof: 99 PSF

Structural Evaluation of Potential Green Roof

- All structural members can safely accommodate new loading
- No structural changes are necessary

Structural Change

Member	Existing Load	New Load	Allowable
oof Deck	81 PSF	99 PSF	159 PSF
oists	329.2 PLF	401.2 PLF	472 PLF
Girder	3.2 kips	3.9 kips	20 kips
teel Post Column	3.2 kips	3.9 kips	16 kips
ISS Column	9.2 kips	11.3 kips	87 kips
oil	0.56 KSF	0.71 KSF	2.0 KSF

Introduction
Prevention Through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System
Green Roof Addition
Conclusion
Acknowledgments

Conclusion

	Summary of Results	
Analysis	Result	
revention through Design	Reduced risk of injury over the building's life	/
açade Re-design	More efficient fall safety measures	/
tick-Built Construction	Cost effective solution for the D.C. area	/
reen Roof Addition	Educational opportunities and financial benefits	/

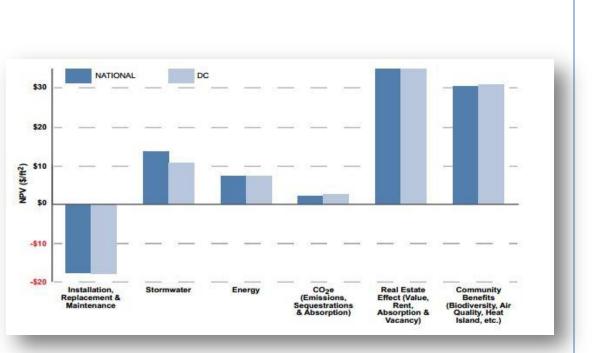
Introduction
Prevention Through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System
Green Roof Addition
Conclusion
Acknowledgments

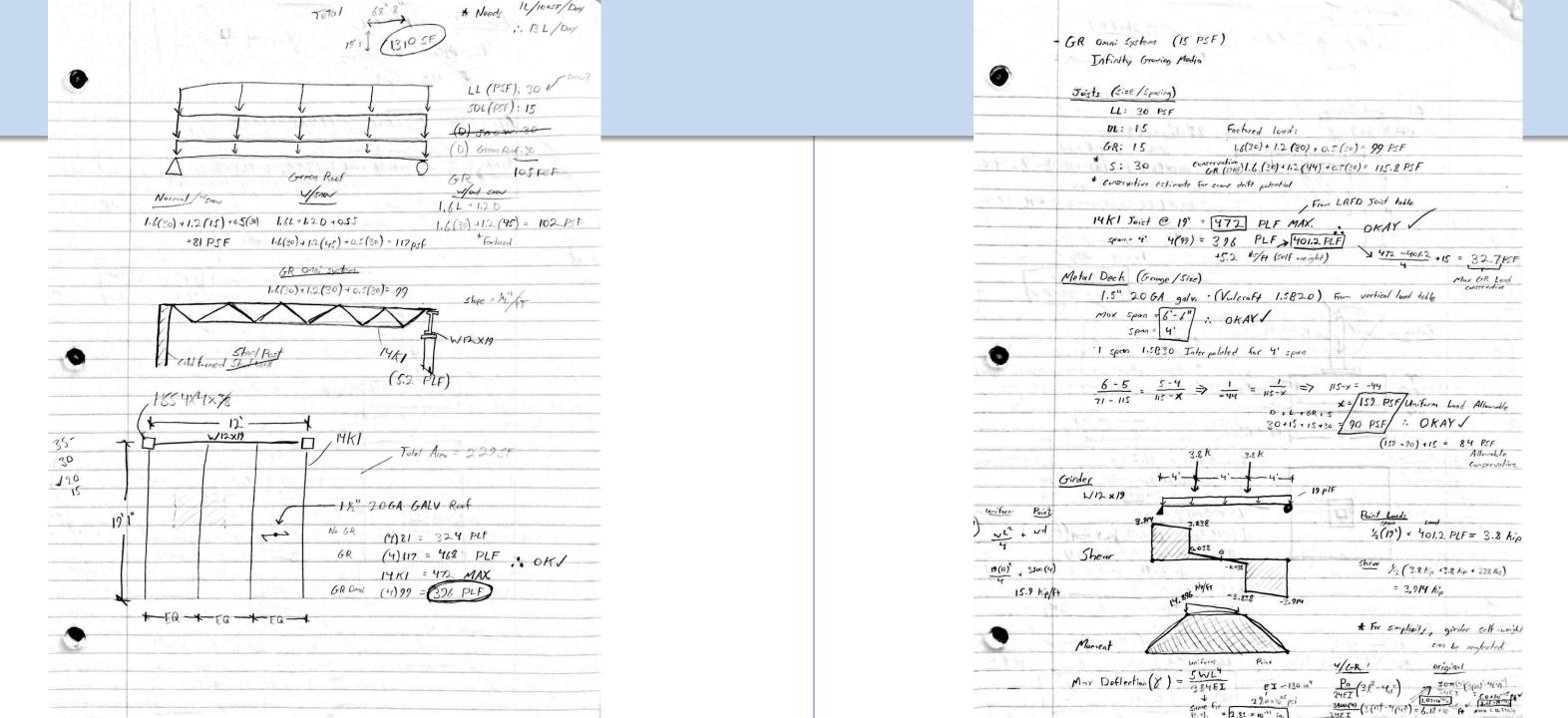
Acknowledgments

- Family and Friends
- John Risley, Contractor Safety Coordinator of PSU OPP
- Professors and Faculty of the Architectural Engineering department

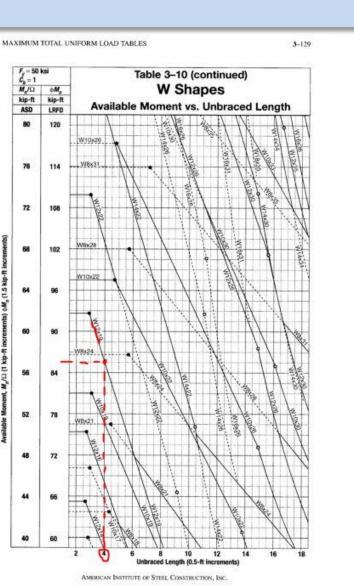
Balfour Beatty
Construction

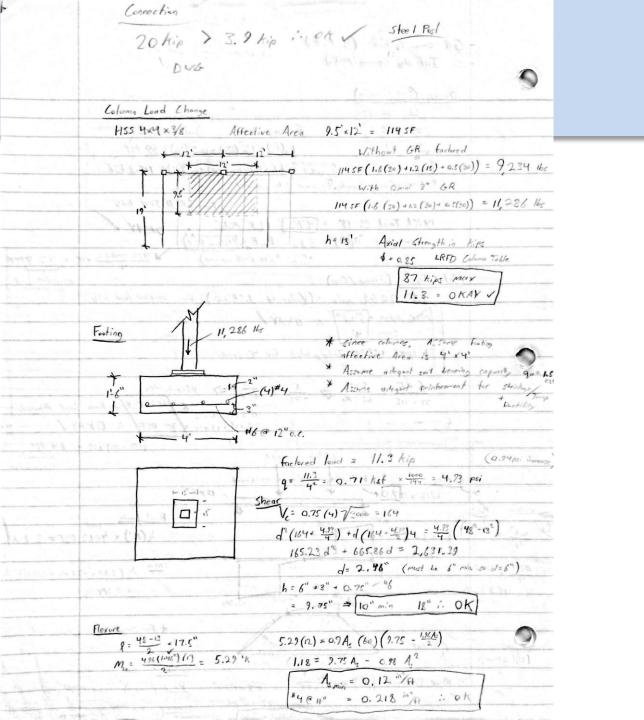
Gen

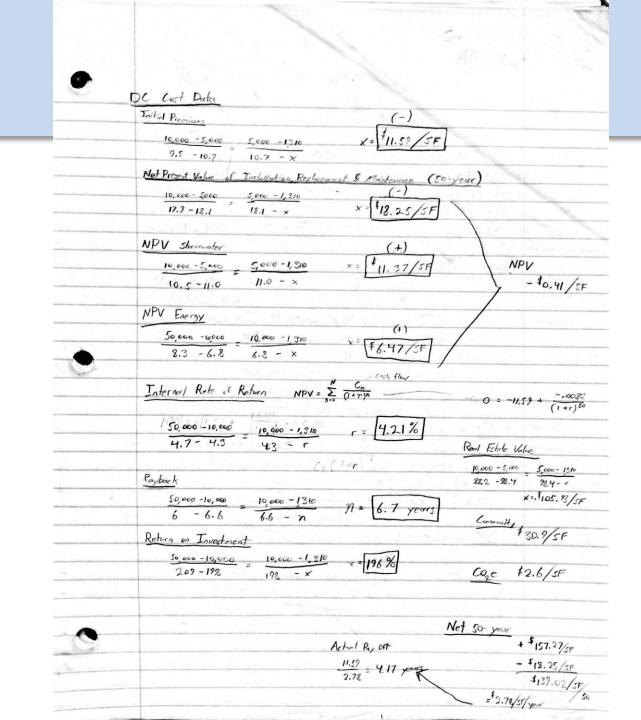




Introduction
Prevention Through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System
Green Roof Addition
Conclusion
Acknowledgments




Green Roof Study conducted by the U.S. General Services
Administration



Introduction
Prevention Through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System
Green Roof Addition
Conclusion
Acknowledgments

Taylor Hall – George Mason University

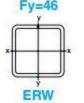
Fairfax, VA

LRFD

Introduction
Prevention Through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System

Green Roof Addition
Conclusion
Acknowledgments

		Max.	Allowable Total (Dead + Live) Uniform Load (PSF)										
No. of	Deck	SDI Const.	st. Span (ftin.) C. to C. of Suppo								AVU DOSAN	+V-901-308-503	11120 B00000
Spans	Type	Span	5'-0	5'-6	6'-0	6'-6	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6	10'-0
	B 24	4'-8	66	52	42	36	30	27	24	21	20		
- 4	B 22	5'-7	91	71	57	47	40	34	30	27	24	22	20
1	B 21	6'-0	104	81	64	53	44	38	33	29	26	24	22
1	B 20	6'-5	115	89	71	58	48	41	36	31	28	25	23
	B 19	7'-1	139	107	85	69	57	48	41	36	32	29	26
1	B 18	7'-8	162	124	98	79	65	55	47	41	36	32	29
	B 16	8'-8	206	157	123	99	81	68	58	50	44	39	34
	B 24	5'-10	126	104	87	74	64	55	47	41	36	32	29
	B 22	6'-11	102	85	71	61	52	46	40	35	32	28	26
- 1	B 21	7'-4	118	97	82	70	60	52	46	41	36	33	29
2	B 20	7'-9	132	109	91	78	67	59	51	46	41	36	33
	B 19	8'-5	154	127	107	91	79	69	60	53	48	43	39
1	B 18	9'-1	174	144	121	103	89	78	68	60	54	48	44
	B 16	10'-3	219	181	152	130	112	97	86	76	68	61	55
	B 24	5'-10	130	100	79	65	54	45	39	34	31	27	25
	B 22	6'-11	128	106	89	76	65	57	50	44	39	34	31
	B 21	7'-4	147	122	102	87	75	65	56	49	42	38	34
3	B 20	7'-9	165	136	114	97	84	72	61	53	46	41	36
	B 19	8'-5	193	159	134	114	98	84	71	61	53	47	41
- 1	B 18	9'-1	218	180	151	129	111	96	81	69	60	52	46
	B 16	10'-3	274	226	190	162	140	119	100	85	73	64	56


Notes: 1. Load tables are calculated using sectional properties based on the steel design thickness shown in the Steel Deck Institute (SDI) Design Manual.

- Loads shown in the shaded areas are governed by the live load deflection not in excess of 1/240 of the span. A dead load of 10 PSF has been included.
- 3 ** Acoustical Deck is not covered under Factory Mutual

ist	8K1	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K9
nation h (in.)	8	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16
ox. Wt Jft.)	5.1	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0
n (ft.) # B	825 550				1-8											
9	825 550															
0	825 480	825 550														0
1	798 377	825 542	- 3											-		
2	666 288	825 455	825 550	825 550	825 550							7				
3	565 225	718 363	825 510	825 510	825 510	- CONCAVING		270000								
4	486 179	618 289	750 425	825 463	825 463	825 550	825 550	825 550	825 550							
5	421 145	537 234	651 344	814 428	825 434	766 475	825 507	825 507	825 507							0
6	369 119	469 192	570 282	714 351	825 396	672 390	825 467	825 467	825 467	825 550						
7		415 159	504 234	630 291	825 366	592 324	742 404	825 443	825 443	768 488	825 526	825 526	825 526	825 526	825 526	825 526
8		369 134	448 197	561 245	760 317	528 272	661 339	795 397	825 408	684 409	762 456	825 490	825 490	825 490	825 490	825 490
9		331 113	402 167	502 207	681 269	472 230	592 287	712 336	825 383	612 347	682 386	820 452	825 455	825 455	825 455	825 455
0		298 97	361 142	453 177	613 230	426 197	534 246	642 287	787 347	552 297	615 330	739 386	825 426	825 426	825 426	825 426
91			327 123	409 153	555 198	385 170	483 212	582 248	712 299	499 255	556 285	670 333	754 373	822 405	825 406	825 406
2			298 106	373 132	505 172	351 147	439 184	529 215	648 259	454 222	505 247	609 289	687 323	747 351	825 385	825 385
3			271 93	340 116	462 150	321 128	402 160	483 188	592 226	415 194	462 216	556 252	627 282	682 307	760 339	825 363
4			249 81	312 101	423 132	294 113	367 141	442 165	543 199	381 170	424 189	510 221	576 248	627 269	697 298	825 346
:5				101		270 100	339 124	408 145	501 175	351 150	390 167	469 195	529 219	576 238	642 263	771 311
6			1			249 88	313	376 129	462 156	324 133	360 148	433 173	489 194	532 211	592 233	711 276
7			1			231 79	289 98	349 115	427 139	300 119	334 132	402 155	453 173	493 188	549 208	658 246
8						214 70	270 88	324 103	397 124	279 106	310 118	373 138	421 155	459 168	510 186	612 220
9										259	289 106	348 124	391 139	427 151	475 167	570
0										241	270 96	324 112	366 126	399 137	444 151	532 178
1			1			1				226 78	252 87	304 101	342 114	373 124	415 137	498 161
12					- 5				7 7	213	237	285	321 103	349 112	388 124	466 147

LRFD Columns Square HSS

Design Axial Strength in kips (\$\phi=0.85)

ze				4	x 4					3 1/2 x 3 1/2		
ness	i i	1/2	3/8	5/16	1/4	3/16	1/8	3/8	5/16	1/4	3/16	1/8
Foo	t	21.63	17.27	14.83	12.21	9.42	6.46	14.72	12.70	10.51	8.15	5.61
ll Th	ickness	0.465	0.349	0.291	0.233	0.174	0.116	0.349	0.291	0.233	0.174	0.116
			W .	25	20	50	F _y = 46 ksi		X4	0.2	66	30
	0 2 3 4 5	235 231 225 218 208	187 184 179 174 167	160 158 154 150 144	132 130 127 123 119	101 99 97 95 91	69 68 67 65 63	160 156 151 145 137	138 134 131 125 119	114 111 108 104 99	88 86 83 80 77	60 59 57 55 53
	6 7 8 9	198 185 172 159 145	159 150 140 129 119	137 129 121 113 104	113 107 101 94 87	87 83 78 73 67	60 57 54 51 47	128 119 108 98 87	112 103 95 86 77	93 87 80 73 65	72 68 62 57 51	50 47 43 40 36
	11 12 13 14 15	131 117 103 90 79	108 97 87 77 67	95 86 77 68 60	79 72 65 58 51	62 56 51 46 41	43 40 36 32 29	76 66 57 49 43	68 60 51 44 39	58 51 44 38 33	46 41 36 31 27	32 29 25 22 19
	16 17 18 19 20	69 61 55 49 44	59 52 47 42 38	53 47 42 37 34	45 40 36 32 29	36 32 28 25 23	26 23 20 18 16	38 33 30 27 24	34 30 27 24 22	29 26 23 21 19	24 21 19 17 15	17 15 13 12 11
	21 22 23 24 25	40 37 34	34 31 29 26	31 28 25 23	26 24 22 20 18	21 19 17 16 15	15 14 12 11 10	22	20	17 16	14 12	10 9
	26 27						10	779				

Taylor Hall – George Mason University

Fairfax, VA

Introduction
Prevention Through Design
Façade Re-design for PtD
Stick-Built vs. Infinity System
Green Roof Addition
Conclusion
Acknowledgments

Load Bearing Capacity of Standard Steel Pipe Columns (36 KSI Yield)

Nominal Dia.	Outside Dia.	Wall Thickness	Weight	20	Tho U	wable Lousands of the contract	of Pound: ed	<u>s</u>
(in.)	(in.)	(in.)	(lb./ft.)	6	8	10	12	14
3	3.50	0.216	7.58	38	34	28	22	16
3-1/2	4.00	0.226	9.11	48	44	38	32	25
4	4.50	0.237	10.79	59	54	49	43	36
5	5.563	0.258	14.62	83	78	73	68	61
6	6.625	0.280	18.97	110	106	101	95	89

^{*} The above loads are the allowable loads for a column in which the load acts downward along the longitudinal axis of the column. For other designs, such as a column with a side load consult with an engineer for the proper size. When in doubt consult with an engineer.

SOIL BEARING CAPACITY

TABLE 1804.2 ALLOWABLE FOUNDATION AND LATERAL PRESSURE

Allowable	Lateral Bearing	Lateral	Sliding
Pressure (psf) ^d	natural grade) ^d	Coefficient of friction ^a	Resistance (psf) ^b
12,000	1,200	0.70	7 <u>3—7</u> 3
4,000	400	0.35	57-70
3,000	200	0.35	-
2,000	150	0.25	_
1,500°	100	\\ <u>\\</u>	130
	Foundation Pressure (psf) ^d 12,000 4,000 3,000	Foundation Pressure (psf) ^d (psf/f below natural grade) ^d 12,000 1,200 4,000 400 3,000 200 2,000 150	Foundation Pressure (psf) ^d 12,000 1,200 0.70 4,000 400 0.35 3,000 200 0.25

Introduction Prevention Through Design Façade Re-design for PtD Stick-Built vs. Infinity System **Green Roof Addition** Conclusion **Acknowledgments**

Roof: Stick-Built Vs. Infinity System

1

	From Tech II				
		\$/SF	To	TAL	
	Total \$1,086,434.97	115.50		Poof = 1128,240.6	4
	RS Means	⁴ 19.28		Frame = \$ 612, 998.7	
-	Infinity	923.00	Joists /G	irdors= 1,224, 596.36	Wood
	Ociginal from BBC	1 30.00	4 / 10	\$1,965,835.	(783)
		1 1 1 1 1 1 1 1		= 28.06/SF	x Fairfox, VA forter
		I I Statement	1	= 121.97/SE	16.48
	Stick Built	Assume	d	- A 4	Saving
	- Wood Roof	*			\$72,158.71
	Wood tross 5"	12 slope, 24" O.C	Span	is 45' 10.5" + 4',	1 49'10,5"
		span Moterials		Total	12/5
		4.43	2.61	7.04	
	Slape pite	h multiplier (5 in	12) = 1	. 0%2	
		red (flot) = 16,85	,		Manager Land
		(44)			
			S46 - To	tal = \$128,	240.64
	- Wood Partitions	*			+
		hannel/2×4 @ 16" O.C.	/Res, chanel/	5/8" Drywall 1-1	" fibergless
		2.10	Is Instalat	2.75	
	Floor	Acea (Net) = 70			
			Sub-Tak	1 = \$612,99	8.75
					· f
Special Control	- Juists / Girders				
-	Residential Lond =	20 40 = 60	Majority		
and the same of	Stoice (Mac) =	£ PL (L = 120	Sub-Tolo	1 = \$1224,596.	36
	* 1000 1000	P.			
	Superimposed Loud	= 75 PSF Girder	4xB Zx8 d	Total Lord	
		Area (Net) = 70		IO IV	
		Male	iels Inste	Hation / Total	
-		12,8	0 4.8	3 17.48	-